Step-by-step explanation:
Here, the total number of bins = 10
Total orange bins = 2
Total apples bins = 3
Total peaches bins = 4
Total melon bins = 1
Let E : Event of picking two peaches
So, P(Picking 1 peach ) = [tex]\frac{\textrm{Total peaches in bins}}{\textrm{Total bins}} = \frac{4}{10}[/tex]
and P (Picking 2nd peach ) = [tex]\frac{\textrm{Total peaches in bins}}{\textrm{Total bins}} = \frac{3}{9}[/tex]
[tex]\implies P(E) = \frac{4}{10} \times\frac{3} {9} = \frac{2}{15}[/tex]
So, the probability of not picking 2 peaches = 1 - P(picking 2 peaches)
[tex]= 1 - (\frac{2}{15} ) = \frac{13}{15}[/tex]
Hence, the probability of not choosing 2 peaches is [tex](\frac{13}{15} )[/tex].