Respuesta :
Answer:
The equation of circle is [tex](x-1)^{2}[/tex]+[tex](y-2)^{2}[/tex] = 18
Step-by-step explanation:
Given the endpoints of the diameter of a circle: (-2,-3) and (4,-1)
We know that the equation of circle is
[tex](x-h)^{2}[/tex] + [tex](y-k)^{2}[/tex]= [tex]r^{2}[/tex]
where (x,y) is any point on the circle, (h,k) is center of the circle and r is radius of circle.
To find (h,k): the center is midpoint of diameter
Midpoint of diameter with end points (x1,y1) and (x2,y2) is given by
( [tex]\frac{x1+x2}{2}[/tex] , [tex]\frac{y1+y2}{2}[/tex] )
( [tex]\frac{-2+4}{2}[/tex] , [tex]\frac{-3-1}{2}[/tex] )
(1,2)
Hence (h,k) is (1,2)
Substituting values of (h.k) and (x.y) as (1,2) and (4,-1) respectively in equation of circle, we get
[tex](4-1)^{2}[/tex] +[tex](-1-2)^{2}[/tex] = [tex]r^{2}[/tex]
[tex]r^{2}[/tex] = 18
Now substituting values of (h,k) and [tex]r^{2}[/tex] in equation of circle, we get
[tex](x-1)^{2}[/tex]+[tex](y-2)^{2}[/tex] = 18
Hence the equation of circle is [tex](x-1)^{2}[/tex]+[tex](y-2)^{2}[/tex] = 18