Respuesta :

Answer:

The equation of circle is [tex](x-1)^{2}[/tex]+[tex](y-2)^{2}[/tex] = 18

Step-by-step explanation:

Given the endpoints of the diameter of a circle: (-2,-3) and (4,-1)

We know that the equation of circle is

[tex](x-h)^{2}[/tex] + [tex](y-k)^{2}[/tex]= [tex]r^{2}[/tex]

where (x,y) is any point on the circle, (h,k) is center of the circle and r is radius of circle.

To find (h,k): the center is midpoint of diameter

Midpoint of diameter with end points (x1,y1) and (x2,y2) is given by

(  [tex]\frac{x1+x2}{2}[/tex] , [tex]\frac{y1+y2}{2}[/tex]  )

( [tex]\frac{-2+4}{2}[/tex] , [tex]\frac{-3-1}{2}[/tex]  )

(1,2)

Hence (h,k) is (1,2)

Substituting values of (h.k) and (x.y) as (1,2) and (4,-1) respectively in equation of circle, we get

[tex](4-1)^{2}[/tex] +[tex](-1-2)^{2}[/tex] = [tex]r^{2}[/tex]

[tex]r^{2}[/tex] = 18

Now substituting values of (h,k) and [tex]r^{2}[/tex] in equation of circle, we get

[tex](x-1)^{2}[/tex]+[tex](y-2)^{2}[/tex] = 18

Hence the equation of circle is [tex](x-1)^{2}[/tex]+[tex](y-2)^{2}[/tex] = 18

Answer:

(x − 1)^2 + (y + 2)^2 = 10

Step-by-step explanation:

ACCESS MORE