Respuesta :

Answer:

The standard form equation of circle is

[tex](x+10)^{2}[/tex] +[tex](y-1)^{2}[/tex] = 5

Step-by-step explanation:

Given the endpoints of diameter of circle (-8,0) and (-12,2)

The equation of circle is given by

[tex](x-h)^{2}[/tex] +[tex](y-k)^{2}[/tex] = [tex]r^{2}[/tex]

where (x,y) is any point on circle, (h,k) is center of circle and r is radius of circle

To find (h, k): center of circle is given by the midpoint of diameter

Midpoint of diameter with endpoints (x1,y1) and (x2,y2) is

(  [tex]\frac{x1+x2}{2}[/tex] , [tex]\frac{y1+y2}{2}[/tex]  )

Substituting the values of endpoints

(  [tex]\frac{-8-12}{2}[/tex] , [tex]\frac{0+2}{2}[/tex] )

(-10,1)

(h,k) is (-10,1)

Substituting the values of (h,k) and (x,y) as (-10,1) and (-8,0) respectively in equation of  circle we get,

[tex](-8+10)^{2}[/tex] + [tex](0-1)^{2}[/tex] = [tex]r^{2}[/tex]

[tex]r^{2}[/tex] = 5

Now substituting the values  of (h,k) and [tex]r^{2}[/tex] , we get

The standard form equation of circle as

[tex](x+10)^{2}[/tex] +[tex](y-1)^{2}[/tex] = 5

ACCESS MORE