Answer:
The area of sector PQR is [tex]243.04\ units^2[/tex]
Step-by-step explanation:
step 1
Find the area of complete circle Q
The area is given by the formula
[tex]A=\pi r^{2}[/tex]
we have
[tex]r=PQ=18\ units[/tex]
substitute
[tex]A=\pi (18)^{2}[/tex]
[tex]A=324\pi\ units^2[/tex]
step 2
Find the area of sector PQR
we know that
The area of complete circle subtends a central angle of 360 degrees
so
using a proportion
Find out the area that correspond to a central angle of 86 degrees
[tex]\frac{324\pi}{360^o} =\frac{x}{86^o}\\\\x=324\pi (86)/360\\\\x=77.4\pi\ units^2[/tex]
assume
[tex]\pi =3.14[/tex]
[tex]77.4(3.14)=243.04\ units^2[/tex]