Respuesta :

gmany

Step-by-step explanation:

The slope-intercept form of an equation of a line:

m - slope

b - y-intercept (0, b)

We have the slope m = -2.

Substitute to the equation:

[tex]y=-2x+b[/tex]

Substitute the coordinates of the given point (2, -5) → x = 2, y = -5

[tex]-5=(-2)(2)+b[/tex]

[tex]-5=-4+b[/tex]            add 4 to both sides

[tex]-5+4=-4+4+b\\\\-1=b\to b=-1[/tex]

The equation of a line:

 [tex]y=-2x-1[/tex]

Two points are enough to draw a straight line.

We have (2, -5) and the y-intercept b = -1 ⇒ (0, -1).

Mark them on a coordinate system.

[tex]\bold{METHOD\ 2:}[/tex]

Mark the given point on the coordinate system.

We know:

[tex]slope=\dfrac{rise}{run}[/tex]

[tex]slope=-2\to\dfrac{rise}{run}=-2\\\\-2=\dfrac{2}{-1}[/tex]

Thereofre

rise = 2 (2 units up)

run = -1 (1 unit to the left)

Ver imagen gmany
Ver imagen gmany
ACCESS MORE