Respuesta :

Answer:

The value of x-y is 18

Step-by-step explanation:

From the question, we can deduced the following ;

xy = 144....eqn(1)

x+y=30.......eqn(2)

For eqn(2), we subtract y from both sides to make x the subject.

[tex] \implies x + y - y= 30 - y[/tex]

[tex]\implies x= 30 - y[/tex]

Putting that x=30-y into eqn(1) we obtain;

[tex]y(30 - y)=144[/tex]

[tex]\implies 30y - {y}^{2} =144[/tex]

[tex]\implies 0= {y}^{2} - 30 + 144[/tex]

[tex]\implies 0= {y}^{2} - 24y - 6y+ 144[/tex]

[tex]\implies 0=y(y- 24)- 6(y - 24)[/tex]

[tex]\implies 0=(y- 6)(y - 24)[/tex]

This implies that

y-6=0 or y-24=0

Hence, y=6 or y=24.

Therefore, when x=6 then y=24 and when x=24, then y=6 all satisfy the given equations.

But from the question, x>y.

This implies that,x=24 and y= 6

Thus, the value of x-y=24-6=18

ACCESS MORE