Answer:
It will take approximately 20 years ([tex]\:t\approx \:20[/tex] years) for the population of a certain country to double if its annual growth rate is 5.3%.
Step-by-step explanation:
Then the population after [tex]t[/tex] years is:
[tex]P=P\left(0\right)e^{kt}[/tex]
Let [tex]x[/tex] be the current population.
[tex]2x[/tex] would be the double this population.
The growth rate is [tex]k = 0.053[/tex]
so the value of [tex]t[/tex] can be determined as:
[tex]xe^{0.053t}=2x[/tex]
[tex]e^{0.053t}=2[/tex]
[tex]0.053t=ln(2)[/tex]
[tex]\mathrm{Multiply\:both\:sides\:by\:}1000[/tex]
[tex]0.035t\cdot \:1000=\ln \left(2\right)\cdot \:1000[/tex]
[tex]\mathrm{Refine}[/tex]
[tex]35t=\ln \left(2\right)\cdot \:1000[/tex]
[tex]\mathrm{Divide\:both\:sides\:by\:}35[/tex]
[tex]\frac{35t}{35}=\frac{\ln \left(2\right)\cdot \:1000}{35}[/tex]
[tex]t=\frac{200\ln \left(2\right)}{7}[/tex]
[tex]t=19.80[/tex]
[tex]\:t\approx \:20[/tex] years
Therefore, it will take approximately 20 years for the population of a certain country to double if its annual growth rate is 5.3%.