can someone help me please
![can someone help me please class=](https://us-static.z-dn.net/files/d80/eda89b87b628704bb7c024ef15deb16e.jpg)
Answer:
The surface area of the square pyramid is 44.84.
Step-by-step explanation:
As the perpendicular height = 3
square base side = 4
Using the formula to compute the surface area of the square pyramid:
[tex]A=a^2+2a\sqrt{\frac{a^2}{4}+h^2}[/tex]
Here:
a = Base Edge = 4
h = height = 3
[tex]A=4^2+2\left(4\right)\sqrt{\frac{4^2}{4}+3^2}[/tex]
[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]
[tex]A=4^2+2\cdot \:4\sqrt{\frac{4^2}{4}+3^2}[/tex]
[tex]A=4^2+8\sqrt{13}[/tex] ∵ [tex]2\cdot \:4\sqrt{\frac{4^2}{4}+3^2}=8\sqrt{13}[/tex]
[tex]A=16+8\sqrt{13}[/tex]
[tex]A=44.84[/tex]
Therefore, the surface area of the square pyramid is 44.84.
Answer:
The surface area of a cube is 37.5
Step-by-step explanation:
Given the the length of one of the sides = s = 2.5
To find the surface area of a cube, using the formula
[tex]A=\:6s^2[/tex]
[tex]A=\:6\left(2.5\right)^2[/tex]
[tex]A=6\cdot \:6.25[/tex] ∵ [tex]2.5^2=6.25[/tex]
[tex]A=37.5[/tex]
Therefore, the surface area of a cube is 37.5