the lateral area of the hat is [tex]175.84in^3[/tex] .
Step-by-step explanation:
Here we have , George made a conical hat that has a slant height of 14 inches and a radius of 4 inches. The cone is open at one end. We need to find the nearest square unit , the lateral area of the hat . Let's find out:
We know that , Lateral area of cone = [tex]\pi rl[/tex]
⇒ [tex]Area = \pi rl[/tex]
⇒ [tex]Area = \pi rl \left \{ {{r=4} \atop {l=14}} \right.[/tex]
⇒ [tex]Area = \pi 4(14)[/tex]
⇒ [tex]Area = 56\pi[/tex]
⇒ [tex]Area = 56(3.14)[/tex]
⇒ [tex]Area = 175.84in^3[/tex]
Therefore , the lateral area of the hat is [tex]175.84in^3[/tex] .