the function f x =x2 +3x-10 models the area of a rectangle. a: describe the length and width of the rectangle in terms of x b: what is a rectangle in terms of x

Respuesta :

A .[tex]Length = x+5\\breadth = x-2[/tex]

B. domain of [tex]f(x)= x^2+3x-10[/tex] here is all values of x > 2 .

Step-by-step explanation:

Correct question is : the function [tex]f(x)= x^2+3x-10[/tex]models the area of a rectangle. a: describe the length and width of the rectangle in terms of x b: what is a domain for above function in relation to rectangle . Let's solve:

a: describe the length and width of the rectangle in terms of x

Let's factorise [tex]f(x)= x^2+3x-10[/tex] :

⇒ [tex]f(x)= x^2+5x-2x-10[/tex]

⇒ [tex]f(x)= x(x+5)-2(x+5)[/tex]

⇒ [tex]f(x)= (x+5)(x-2)[/tex]

Since , ⇒ [tex]f(x)=length(breadth)[/tex] So

[tex]Length = x+5\\breadth = x-2[/tex] .

b: what is a domain for above function in relation to rectangle

Since area is always > 0 , and (length , breadth)>0 So,

[tex]f(x)= (x+5)(x-2)>0\\x>0 \\x>2[/tex] Therefore, domain of [tex]f(x)= x^2+3x-10[/tex] here is all values of x > 2 .

ACCESS MORE