Respuesta :

Answer:

The equation that represents the table is:

  • [tex]y=\frac{9}{2}x[/tex]

Step-by-step explanation:

Taking two points from the table

  • (2, 9)
  • (4, 18)

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(2,\:9\right),\:\left(x_2,\:y_2\right)=\left(4,\:18\right)[/tex]

[tex]m=\frac{18-9}{4-2}[/tex]

[tex]m=\frac{9}{2}[/tex]

As the slope-intercept form is

[tex]\:y=mx+b[/tex]

Plugging (2, 9) to find the y-intercept 'b'

[tex]9=\frac{9}{2}\left(2\right)+b[/tex]

[tex]\mathrm{Switch\:sides}[/tex]

[tex]\frac{9}{2}\left(2\right)+b=9[/tex]

[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]

[tex]\frac{9}{2}\cdot \:2+b=9[/tex]

[tex]9+b=9[/tex]

[tex]b=0[/tex]

so the equation becomes

[tex]\:y=mx+b[/tex]

  • [tex]m=\frac{9}{2}[/tex]
  • [tex]b=0[/tex]

[tex]y=\frac{9}{2}\left(x\right)+0[/tex]

[tex]y=\frac{9}{2}x[/tex]

Therefore, the equation that represents the table is:

  • [tex]y=\frac{9}{2}x[/tex]

The graph of the equation is also attached below.

Ver imagen SaniShahbaz