Complete the expression that represents the table
Y=___x
![Complete the expression that represents the table Yx class=](https://us-static.z-dn.net/files/db8/2d0b560e121428a3cfb22d6f700b9fe7.png)
Answer:
The equation that represents the table is:
Step-by-step explanation:
Taking two points from the table
[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(2,\:9\right),\:\left(x_2,\:y_2\right)=\left(4,\:18\right)[/tex]
[tex]m=\frac{18-9}{4-2}[/tex]
[tex]m=\frac{9}{2}[/tex]
As the slope-intercept form is
[tex]\:y=mx+b[/tex]
Plugging (2, 9) to find the y-intercept 'b'
[tex]9=\frac{9}{2}\left(2\right)+b[/tex]
[tex]\mathrm{Switch\:sides}[/tex]
[tex]\frac{9}{2}\left(2\right)+b=9[/tex]
[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]
[tex]\frac{9}{2}\cdot \:2+b=9[/tex]
[tex]9+b=9[/tex]
[tex]b=0[/tex]
so the equation becomes
[tex]\:y=mx+b[/tex]
[tex]y=\frac{9}{2}\left(x\right)+0[/tex]
[tex]y=\frac{9}{2}x[/tex]
Therefore, the equation that represents the table is:
The graph of the equation is also attached below.