Which point lies on the circumference of a circle with center (6,5) that passes through the point (9,8)? A. (3,2) B. (4,7) C. (6,2) or D. (12,11)
![Which point lies on the circumference of a circle with center 65 that passes through the point 98 A 32 B 47 C 62 or D 1211 class=](https://us-static.z-dn.net/files/dc8/96ccd9d8be5c18a449ac91ec6db2932d.jpg)
Answer:
A. (3,2)
Step-by-step explanation:
step 1
Find the radius of the circle
we know that
The distance between the center of the circle and any point on the circumference is equal to the radius of the circle
we have the ordered pairs
(6,5) and (9,8)
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
substitute
[tex]r=\sqrt{(8-5)^{2}+(9-6)^{2}}[/tex]
[tex]r=\sqrt{(3)^{2}+(3)^{2}}[/tex]
[tex]r=\sqrt18}\ units[/tex]
step 2
Find the equation of the circle
[tex](x-h)^2+(y-k)^2=r^2[/tex]
substitute the given values
[tex](x-6)^2+(y-5)^2=(\sqrt18})^2[/tex]
[tex](x-6)^2+(y-5)^2=18[/tex]
step 3
Verify each ordered pair
Remember that
If a ordered pair lie on the circumference of the circle, then the ordered pair must satisfy the equation of the circle
A) we have
(3,2)
substitute the value of x and the value of y in the equation of the circle
[tex](3-6)^2+(2-5)^2=18[/tex]
[tex](-3)^2+(-3)^2=18[/tex]
[tex]18=18[/tex] ----> is true
so
The ordered pair lie on the circumference of the circle
B) we have
(4,7)
substitute the value of x and the value of y in the equation of the circle
[tex](4-6)^2+(7-5)^2=18[/tex]
[tex](-2)^2+(2)^2=18[/tex]
[tex]8=18[/tex] ----> is not true
so
The ordered pair not lie on the circumference of the circle
C) we have
(6,2)
substitute the value of x and the value of y in the equation of the circle
[tex](6-6)^2+(2-5)^2=18[/tex]
[tex](0)^2+(-3)^2=18[/tex]
[tex]9=18[/tex] ----> is not true
so
The ordered pair not lie on the circumference of the circle
D) we have
(12,11)
substitute the value of x and the value of y in the equation of the circle
[tex](12-6)^2+(11-5)^2=18[/tex]
[tex](6)^2+(6)^2=18[/tex]
[tex]72=18[/tex] ----> is not true
so
The ordered pair not lie on the circumference of the circle