Answer:
The graph is attached below.
Step-by-step explanation:
Given the function
[tex]f\left(x\right)\:=\:\left(1/3\right)^x+1[/tex]
Exponentiation function have a horizontal Asymptotes.
Finding the horizontal Asymptotes
[tex]\mathrm{Exponential\:function\:of\:the\:form}\:f\left(x\right)\:=c\cdot \:n^{ax+b}+k\:[/tex]
[tex]\mathrm{has\:a\:horizontal\:asymptote}\:y=k\:[/tex]
[tex]k=1[/tex]
[tex]\mathrm{The\:horizontal\:asymptote\:is:}[/tex]
[tex]y=1[/tex]
Finding y-intercepts
[tex]y\mathrm{-intercept\:is\:the\:point\:on\:the\:graph\:where\:}x=0[/tex]
[tex]y=\left(\frac{1}{3}\right)^0+1[/tex]
[tex]\mathrm{Apply\:rule}\:a^0=1,\:a\ne \:0[/tex]
[tex]\left(\frac{1}{3}\right)^0=1[/tex]
[tex]y=1+1[/tex]
[tex]\mathrm{Add\:the\:numbers:}\:1+1=2[/tex]
[tex]y=2[/tex]
[tex]\mathrm{Y\:Intercepts}:\:\left(0,\:2\right)[/tex]
The graph is attached below.