Respuesta :

Answer:

As

  • The center of the circle is (-6, 11)
  • The radius of the circle is 6

Therefore, the statements A and C are true.

Step-by-step explanation:

Given the equation of the circle

[tex]\left(x+6\right)^2+\left(y-11\right)^2=36[/tex]

[tex]\left(x-a\right)^2+\left(y-b\right)^2=r^2[/tex]

[tex]\mathrm{is\:the\:circle\:equation\:with\:a\:radius\:r,\:centered\:at}\:\left(a,\:b\right)[/tex]

[tex]\mathrm{Rewrite}\:\left(x+6\right)^2+\left(y-11\right)^2=36\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}[/tex]

[tex]\left(x-\left(-6\right)\right)^2+\left(y-11\right)^2=6^2[/tex]

[tex]\mathrm{Therefore\:the\:circle\:properties\:are:}[/tex]

[tex]\left(a,\:b\right)=\left(-6,\:11\right),\:r=6[/tex]

Thus,

  • The center of the circle is (-6, 11)
  • The radius of the circle is 6

Therefore, the statements A and C are true.