Respuesta :

Answer:

[tex]\mathrm{Factor}\:q^2-8q+12:\quad \left(q-2\right)\left(q-6\right)[/tex]

Step-by-step explanation:

Considering the expression

[tex]q^2-8q+12[/tex]

[tex]\mathrm{Break\:the\:expression\:into\:groups}[/tex]

[tex]=\left(q^2-2q\right)+\left(-6q+12\right)[/tex]

[tex]\mathrm{Factor\:out\:}q\mathrm{\:from\:}q^2-2q\mathrm{:\quad }q\left(q-2\right)[/tex]

[tex]=q\left(q-2\right)+\left(-6q+12\right)[/tex]

[tex]\mathrm{Factor\:out\:}-6\mathrm{\:from\:}-6q+12\mathrm{:\quad }-6\left(q-2\right)[/tex]

[tex]=q\left(q-2\right)-6\left(q-2\right)[/tex]

[tex]\mathrm{Factor\:out\:common\:term\:}q-2[/tex]

[tex]=\left(q-2\right)\left(q-6\right)[/tex]

Therefore,

[tex]\mathrm{Factor}\:q^2-8q+12:\quad \left(q-2\right)\left(q-6\right)[/tex]