option C is correct.
Step-by-step explanation:
If a function is defined as
[tex]f(x)=a^x[/tex] where, a>0, then the range of the function is greater than 0.
[tex]a^x>0[/tex] .... (1)
Option A: Using inequity (1),
[tex]2^x>0[/tex]
Multiply both side by 3.
[tex]3(2^x)>0[/tex]
The range of first function is y>0. Therefore option A is incorrect.
Option B: Using inequity (1),
[tex]3^x>0[/tex]
Multiply both side by 2.
[tex]2(3^x)>0[/tex]
The range of second function is y>0. Therefore option B is incorrect.
Option C: Using inequity (1),
[tex]2^x>0[/tex]
Multiply both side by -1.
[tex]-2^x<0[/tex]
Add 3 on both the sides.
[tex]-2^x+3<3[/tex]
[tex]y<3[/tex]
The range of first function is y<3. Therefore option C is correct.
Option D: Using inequity (1),
[tex]2^x>0[/tex]
Subtract 3 from both the sides.
[tex]2^x-3>-3[/tex]
[tex]y>-3[/tex]
The range of second function is y>-3. Therefore option D is incorrect.