Respuesta :

option C is correct.

Step-by-step explanation:

If a function is defined as

[tex]f(x)=a^x[/tex] where, a>0, then the range of the function is greater than 0.

[tex]a^x>0[/tex]               .... (1)

Option A: Using inequity (1),

[tex]2^x>0[/tex]

Multiply both side by 3.

[tex]3(2^x)>0[/tex]

The range of first function is y>0. Therefore option A is incorrect.

Option B: Using inequity (1),

[tex]3^x>0[/tex]

Multiply both side by 2.

[tex]2(3^x)>0[/tex]

The range of second function is y>0. Therefore option B is incorrect.

Option C: Using inequity (1),

[tex]2^x>0[/tex]

Multiply both side by -1.

[tex]-2^x<0[/tex]

Add 3 on both the sides.

[tex]-2^x+3<3[/tex]

[tex]y<3[/tex]

The range of first function is y<3. Therefore option C is correct.

Option D: Using inequity (1),

[tex]2^x>0[/tex]

Subtract 3 from both the sides.

[tex]2^x-3>-3[/tex]

[tex]y>-3[/tex]

The range of second function is y>-3. Therefore option D is incorrect.

ACCESS MORE