Respuesta :
The product is [tex]104 x^{4}+16 \sqrt{30} x^{4}[/tex]
Explanation:
The given expression is [tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}[/tex]
We need to determine the product of the given expression.
First, we shall simplify the given expression.
Thus, we have,
[tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x \sqrt{5} x+2 x^{2} \sqrt{6}\right)^2[/tex]
[tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x^{2} \sqrt{5}+2 x^{2} \sqrt{6}\right)^2[/tex]
Expanding the expression, we have,
[tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x^{2} \sqrt{5}+2 x^{2} \sqrt{6}\right)\left(4 x^{2} \sqrt{5}+2 x^{2} \sqrt{6}\right)[/tex]
Now, we shall apply FOIL, we get,
[tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x^{2} \sqrt{5}\right)^{2}+2 ( 2 x^{2} \sqrt{6})(4 x^{2} \sqrt{5})+\left(2 x^{2} \sqrt{6}\right)^{2}[/tex]
Simplifying the terms, we have,
[tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=16 \cdot 5 x^{4}+16 \sqrt{30} x^{4}+4 \cdot 6 x^{4}[/tex]
Multiplying, we get,
[tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=80 x^{4}+16 \sqrt{30} x^{4}+24 x^{4}[/tex]
Adding the like terms, we get,
[tex]\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=104 x^{4}+16 \sqrt{30} x^{4}[/tex]
Thus, the product of the given expression is [tex]104 x^{4}+16 \sqrt{30} x^{4}[/tex]
Answer: It would be what the other person said so on the quiz or whatever it is D) 104x^4 +16x^4 square root 30
Step-by-step explanation:
I checked on my calculator and online it is correct.