Answer:
Ratio of AC/CB = 1/3
Step-by-step explanation:
Distance between point A and point C
[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
[tex]\mathrm{The\:distance\:between\:}\left(-1.5,\:0\right)\mathrm{\:and\:}\left(0,\:2\right)\mathrm{\:is\:}[/tex]
[tex]=\sqrt{\left(0-\left(-1.5\right)\right)^2+\left(2-0\right)^2}[/tex]
[tex]=\sqrt{\left(0+1.5\right)^2+\left(2-0\right)^2}[/tex]
[tex]=\sqrt{1.5^2+\left(2-0\right)^2}[/tex]
[tex]=\sqrt{2.25+2^2}[/tex]
[tex]=\sqrt{2.25+4}[/tex]
[tex]=\sqrt{6.25}[/tex]
[tex]=2.5[/tex]
Distance between point B and point C
[tex]\mathrm{The\:distance\:between\:}\left(4.5,\:8\right)\mathrm{\:and\:}\left(0,\:2\right)\mathrm{\:is\:}[/tex]
[tex]=\sqrt{\left(0-4.5\right)^2+\left(2-8\right)^2}[/tex]
[tex]=\sqrt{4.5^2+6^2}[/tex]
[tex]=\sqrt{20.25+6^2}[/tex]
[tex]=\sqrt{20.25+36}[/tex]
[tex]=\sqrt{56.25}[/tex]
[tex]=7.5[/tex]
Ratio of AC/CB
= 2.5/7.5
=1/3