Answer:
1:3
Step-by-step explanation:
We can note down the following base on the question.
A(-1.5, 0) ,B (4.5, 8) and C(0, 2).
Let find the length o AC and CB.
The distance formula is given by
[tex]d = \sqrt{({x_2- x_1})^{2} +({y_2 - y_1})^{2} } [/tex]
This implies that
[tex]dAC= \sqrt{({0- - 1.5})^{2} +({0- 2})^{2}} [/tex]
[tex] \implies AC= \sqrt{{ 1.5}^{2} +(- 2)^{2}} [/tex]
[tex] \implies AC= \sqrt{2.25 +4} [/tex]
[tex]\implies AC= \sqrt{6.25 } [/tex]
[tex]\implies AC= 2.5 units[/tex]
Also,
[tex]CB = \sqrt{ {(4.5 - 0)}^{2} + ( {8 - 2)}^{2} } [/tex]
[tex] \implies CB = \sqrt{ {4.5} ^{2} +{6}^{2} } [/tex]
[tex]\implies CB = \sqrt{ 20.25 +36} [/tex]
[tex]\implies CB = \sqrt{ 56.25} [/tex]
[tex]\implies CB =7.5 units [/tex]
Therefore, the ratio of
[tex] \frac{AC}{CB} = \frac{2.5}{7.5} = \frac{1}{3} = 1:3[/tex]