Line segment AB has endpoints A(-1.5, 0) and B(4.5 8). Point C is on line segment AB located at (0, 2)

What is the ratio of [tex]\frac{AC}{CB}[/tex]

Respuesta :

Answer:

The ratio of AC/CB=1/3

Step-by-step explanation:

We use the section formula:

[tex](\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})[/tex]

We substitute the point A(-1.5,0) and B(4.5,8).

We plug in the points to get:

[tex](\frac{4.5m - 1.5n}{m+n},\frac{8m+n \times 0}{m+n})[/tex]

This is supposed to be equal to: (0,2).

[tex](\frac{4.5m - 1.5n}{m+n},\frac{8m+n \times 0}{m+n}) = (0,2)[/tex]

We can equate, corresponding coordinates to find m and n.

[tex] \frac{4.5m - 1.5n}{m + n} = 0[/tex]

This implies that:

[tex]4.5m - 1.5n = 0[/tex]

[tex]4.5m = 1.5n[/tex]

[tex] \frac{m}{n} = \frac{1.5}{4.5} [/tex]

[tex]\frac{m}{n} = \frac{1}{3} [/tex]

Therefore the ratio is m:n=1:3

ACCESS MORE