Answer:
The ratio of AC/CB=1/3
Step-by-step explanation:
We use the section formula:
[tex](\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})[/tex]
We substitute the point A(-1.5,0) and B(4.5,8).
We plug in the points to get:
[tex](\frac{4.5m - 1.5n}{m+n},\frac{8m+n \times 0}{m+n})[/tex]
This is supposed to be equal to: (0,2).
[tex](\frac{4.5m - 1.5n}{m+n},\frac{8m+n \times 0}{m+n}) = (0,2)[/tex]
We can equate, corresponding coordinates to find m and n.
[tex] \frac{4.5m - 1.5n}{m + n} = 0[/tex]
This implies that:
[tex]4.5m - 1.5n = 0[/tex]
[tex]4.5m = 1.5n[/tex]
[tex] \frac{m}{n} = \frac{1.5}{4.5} [/tex]
[tex]\frac{m}{n} = \frac{1}{3} [/tex]
Therefore the ratio is m:n=1:3