Respuesta :
value of the expression [tex]\frac{1.6(10^{5})}{0.2(10^{2})}[/tex] or [tex]1.6(10^{5})[/tex] over [tex]0.2(10^{2})[/tex] is [tex]8000[/tex] ([tex]8 \times 10 ^3[/tex]).
Step-by-step explanation:
Here we have , to find the value of the expression shown below 1.6 x 10 to the 5th power over 0.2 x 10 to the 2nd power i.e. [tex]1.6(10^{5})[/tex] over [tex]0.2(10^{2})[/tex] :
⇒ [tex]1.6(10^{5})[/tex] over [tex]0.2(10^{2})[/tex]
⇒ [tex]\frac{1.6(10^{5})}{0.2(10^{2})}[/tex]
multiply and divide by 10 to remove decimals, so we get
⇒ [tex]\frac{16(10^{5})}{2(10^{2})}[/tex]
⇒ [tex]\frac{8(2)(10^{5})}{2(10^{2})}[/tex]
⇒ [tex]8\frac{(10^{5})}{(10^{2})}[/tex]
⇒ [tex]8(10^{(5-2)})[/tex]
⇒ [tex]8(10^{3})[/tex]
⇒ [tex]8(1000)[/tex]
⇒ [tex]8000[/tex]
Therefore, value of the expression [tex]\frac{1.6(10^{5})}{0.2(10^{2})}[/tex] or [tex]1.6(10^{5})[/tex] over [tex]0.2(10^{2})[/tex] is [tex]8000[/tex] ([tex]8 \times 10 ^3[/tex]).
Answer:
1.6 * 10^5 / 2*10^1 =
160,000 / 20 =
8,000
Step-by-step explanation: