Answer:
Max's paper airplane flew [tex]\frac{77}{12}[/tex] feet or [tex]6\frac{5}{12}[/tex] feet.
Step-by-step explanation:
As Nora's paper airplane flew 9 1/6 feet
i.e.
[tex]9\frac{1}{6}=\frac{55}{6}[/tex]
Nora's paper was farther than Max's plane flew by = 2 3/4 feet
i.e.
[tex]2\frac{3}{4}=\frac{11}{4}[/tex]
Thus the equation to show how far Max's paper airplane flew is:
[tex]\:\:9\frac{1}{6}-2\frac{3}{4}[/tex]
[tex]=\frac{55}{6}-\frac{11}{4}[/tex]
[tex]\mathrm{Least\:Common\:Multiplier\:of\:}6,\:4:\quad 12[/tex]
[tex]\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}[/tex]
[tex]=\frac{110}{12}-\frac{33}{12}[/tex]
[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]
[tex]=\frac{110-33}{12}[/tex]
[tex]\mathrm{Subtract\:the\:numbers:}\:110-33=77[/tex]
[tex]=\frac{77}{12}[/tex]
[tex]=6\frac{5}{12}[/tex]
Therefore, Max's paper airplane flew [tex]\frac{77}{12}[/tex] feet or [tex]6\frac{5}{12}[/tex] feet.