One container is filled with mixture that is 25% acid. A second container is filled with a mixture that is 55% acid. The second container is 55% larger than the first, and the two containers are emptied into a third container. What percent of acid is the third container?

Respuesta :

Answer:

Therefore the third container contains   [tex]\frac{735}{17}\%[/tex] = 43.23 %  acid.

Step-by-step explanation:

Given that, One container is filled with the mixture that 25% acid. 55% acid is contain by second container.

Let the volume of first container be x cubic unit.

Since the volume of second container is 55% larger than the first.

Then the volume of the second container is

[tex]= (V\times \frac{100+55}{100})[/tex]   cubic unit.

[tex]=\frac{155}{100}V[/tex]  cubic unit.

The amount of acid in first container is

[tex]=V\times \frac{25}{100}[/tex]  cubic unit.

[tex]=\frac{25}{100}V[/tex]  cubic unit.

The amount of acid in second container is

[tex]=(\frac{155}{100}V \times \frac{55}{100})[/tex] cubic unit.

[tex]=\frac{8525}{10000}V[/tex] cubic unit.

Total amount of acid [tex]=(\frac{25}{100}V+\frac{8525}{10000}V)[/tex] cubic unit.

                                   [tex]=(\frac{2500+8525}{10000}V)[/tex] cubic unit.

                                   [tex]=(\frac{11025}{10000}V)[/tex]cubic unit.

Total volume of mixture [tex]=(V+\frac{155}{100}V)[/tex] cubic unit.

                                       [tex]=\frac{100+155}{100}V[/tex] cubic unit.

                                       [tex]=\frac{255}{100}V[/tex]  cubic unit.

The amount of acid in the mixture is

[tex]=\frac{\textrm{The volume of acid}}{\textrm{The amount of mixture}}\times 100 \%[/tex]

[tex]=\frac {\frac{11025}{10000}V}{\frac{255}{100}V}\times 100\%[/tex]

[tex]=\frac{735}{17}\%[/tex]

Therefore the third container contains  [tex]\frac{735}{17}\%[/tex]  acid.

ACCESS MORE