Respuesta :
Answer:
Therefore the third container contains [tex]\frac{735}{17}\%[/tex] = 43.23 % acid.
Step-by-step explanation:
Given that, One container is filled with the mixture that 25% acid. 55% acid is contain by second container.
Let the volume of first container be x cubic unit.
Since the volume of second container is 55% larger than the first.
Then the volume of the second container is
[tex]= (V\times \frac{100+55}{100})[/tex] cubic unit.
[tex]=\frac{155}{100}V[/tex] cubic unit.
The amount of acid in first container is
[tex]=V\times \frac{25}{100}[/tex] cubic unit.
[tex]=\frac{25}{100}V[/tex] cubic unit.
The amount of acid in second container is
[tex]=(\frac{155}{100}V \times \frac{55}{100})[/tex] cubic unit.
[tex]=\frac{8525}{10000}V[/tex] cubic unit.
Total amount of acid [tex]=(\frac{25}{100}V+\frac{8525}{10000}V)[/tex] cubic unit.
[tex]=(\frac{2500+8525}{10000}V)[/tex] cubic unit.
[tex]=(\frac{11025}{10000}V)[/tex]cubic unit.
Total volume of mixture [tex]=(V+\frac{155}{100}V)[/tex] cubic unit.
[tex]=\frac{100+155}{100}V[/tex] cubic unit.
[tex]=\frac{255}{100}V[/tex] cubic unit.
The amount of acid in the mixture is
[tex]=\frac{\textrm{The volume of acid}}{\textrm{The amount of mixture}}\times 100 \%[/tex]
[tex]=\frac {\frac{11025}{10000}V}{\frac{255}{100}V}\times 100\%[/tex]
[tex]=\frac{735}{17}\%[/tex]
Therefore the third container contains [tex]\frac{735}{17}\%[/tex] acid.