Answer:
The mountain is 1.34 miles tall.
Step-by-step explanation:
See the attached diagram.
The height of the mountain is h miles (say).
Now, from the right triangle Δ ABC,
[tex]\tan 3.5^{\circ} = \frac{AB}{AC} = \frac{h}{x + 15}[/tex]
⇒ [tex]x + 15 = \frac{h}{\tan 3.5^{\circ}} = 16.35h[/tex] ........... (1)
Again, from the right triangle Δ ABD,
[tex]\tan 11^{\circ} = \frac{AB}{AD} = \frac{h}{x}[/tex]
⇒ [tex]x = \frac{h}{\tan 11^{\circ}} = 5.14h[/tex] ............. (2)
Now, solving equations (1) and (2) we get,
15 = (16.35 - 5.14)h = 11.2h
⇒ h = 1.34 miles (To the nearest hundredth of a mile)
Therefore, the mountain is 1.34 miles tall. (Answer)