Respuesta :
Answer:
There are 5847.95 lines per cm for the grating.
Explanation:
Given that,
Wavelength of mercury line, [tex]\lambda=546.1\ nm=546.1\times 10^{-9}\ m[/tex]
Angle in the third order spectrum, [tex]\theta=73.2^{\circ}[/tex]
Using the grating equation, we get :
[tex]d\ \sin\theta=m\lambda[/tex]
Here, m = 3
[tex]d=\dfrac{m\lambda}{\sin\theta}\\\\d=\dfrac{3\times 546.1\times 10^{-9}}{\sin(73.2)}\\\\d=1.71\times 10^{-6}\ m[/tex]
Let there are N lines for the grating. So,
[tex]N=\dfrac{1}{d}\\\\N=\dfrac{1}{1.71\times 10^{-6}\ m}\\\\N=\dfrac{1}{1.71\times 10^{-6}\times 10^2\ cm}\\\\N=\dfrac{1}{1.71\times 10^{-4}\ cm}\\\\N=5847.95\ \text{lines}/\text{cm}[/tex]
So, there are 5847.95 lines per cm for the grating.
Answer:
5841.42 lines per cm
Explanation:
wavelength, λ = 546.1 nm = 546 x 10^-9 m
Angle, θ = 73.2°
order, m = 3
Let d is the separation between the slits
d x Sinθ = m x λ
d x Sin 73.2 = 3 x 546.1 x 10^-9
d x 0.957 = 1638.3 x 10^-9
d = 1.7119 x 10^-6 m
d = 1.7119 x 10^-4 cm
Let N be the number of lines per cm.
So, N = 1 /d
[tex]N = \frac{1}{1.7119 \times 10^{-4}}[/tex]
N = 5841.42 lines per cm