Explanation:
For compression, equation for entropy change ([tex]\Delta S[/tex]) is as follows.
[tex]\Delta S = \int_{T_{i}}^{T_{f}} \frac{C_{p}}{T} dT - \int_{P_{i}}^{P_{f}}V \alpha dP[/tex]
= [tex]nC_{p,m} ln \frac{T_{f}}{T_{i}} - nV_{m,t} \alpha (P_{f} - P_{i})[/tex]
Hence, for an isothermal process [tex]T_{i} = T_{f}[/tex]
Now, we will put the given values into the above formula as follows.
[tex]\Delta S = nC_{p,m} ln \frac{T_{f}}{T_{i}} - nV_{m,t} \alpha (P_{f} - P_{i})[/tex]
= [tex]nC_{p,m} ln(1) - [3.05 mol \times \frac{63.546 g/mol}{8.92 g/cm^{3}} \times \frac{1 m^{3}}{10^{6} cm^{3}} \times 0.492 \times 10^{-4} (1370 - 1)bar \times \frac{10^{5} Pa}{1 bar})[/tex] = -0.146 J/K
Thus, we can conclude that value of [tex]\Delta S[/tex] for the isothermal compression is -0.146 J/K.