Answer:
(a) 3π
(b) 28/3
(c) 9π/28
Step-by-step explanation:
The volume of a cone is given by
[tex]V = \frac{1}{3} \pi r^2 h[/tex]
r is the radius, h is the height.
From the question,
[tex]\dfrac{dV}{dt} = 28\pi[/tex]
When r = 3, V = 12π and
[tex]\dfrac{dr}{dt} = 0.5[/tex]
(a)
The area of the base (a circle) = [tex]\pi r^2[/tex]
[tex]\dfrac{dA}{dr} = 2\pi r[/tex]
[tex]\dfrac{dA}{dt} = \dfrac{dA}{dr} \cdot\dfrac{dr}{dt}[/tex]
[tex]\dfrac{dA}{dt} = 2\pi \times 3 \times0.5= 3\pi[/tex]
(b)
[tex]\dfrac{dV}{dh} = \frac{1}{3} \pi r^2[/tex]
[tex]\dfrac{dV}{dt} = \dfrac{dV}{dh} \cdot\dfrac{dh}{dt}[/tex]
[tex]\dfrac{dh}{dt} = \dfrac{dV}{dt}\div \dfrac{dV}{dh} = \dfrac{28\pi}{\frac{1}{3}\pi\times3^2 } = \dfrac{28}{3}[/tex]
(c)
[tex]\dfrac{dA}{dh} = \dfrac{dA}{dt}\div\dfrac{dh}{dt} = \dfrac{3\pi}{28/3} = \dfrac{9\pi}{28}[/tex]