The per-unit impedance of a single-phase electric load is 0.3. The base power is 500 kVA, and the base voltage is 13.8 kV. a. Find the per-unit impedance of the load if 1 MVA and 24 kV are selected as base values. b. Find the ohmic value of the impedance.

Respuesta :

Answer:

114.26

Explanation:

a)Formula for per unit impedance for change of base is

Zpu2= Zpu1×(kV1/kV2)²×(kVA2/kVA1)

Zpu2: New per unit impedance

Zpu1: given per unit impedance

kV1: give base voltage

kV2: New bas votlage

kVA1: given bas power

kVA2: new base power

In the question

Zpu2=??

Zpu1= 0.3

kV2=24kV

kV1= 13.8 kV

kVA2= 1MVA ×1000= 1000 kVA

kVA1=500kVA

Zpu2= 0.3(13.8/24)²×(1000/500)

Zpu2= 0.198

b) to find ohmic impedance we will first calculate base value of impedance(Zbase). So,

Zbase= kV²/MVA

  Zbase= 13.8²/(500/1000)

  Zbase=380.88

Now that we have base value of impedance, Zbase, we can calculate actual ohmic value of impedance(Zactual) by using the following formula:

Zpu=Zactual/Zbase

0.3= Zactual/380.88

Zactual= 114.26 ohms

ACCESS MORE