Respuesta :
Answer:
[tex]-8.54883\times 10^{-12}\ rad/s^2[/tex]
Explanation:
T = Time period = 0.0922 s
[tex]\dfrac{dT}{dt}=3.64\times 10^{-7}\ s/y[/tex]
Angular speed is given by
[tex]\omega=\dfrac{2\pi}{T}[/tex]
Angular acceleration is given by
[tex]\alpha=\dfrac{d\omega}{dt}\\\Rightarrow \alpha=\dfrac{d\dfrac{2\pi}{T}}{dt}\\\Rightarrow \alpha=-\dfrac{2\pi}{T^2}\dfrac{dT}{dt}\\\Rightarrow \alpha=-\dfrac{2\pi}{0.0922^2}\times\dfrac{3.64\times 10^{-7}}{365.25\times 24\times 60\times 60}\\\Rightarrow \alpha=-8.52541\times 10^{-12}\ rad/s^2[/tex]
The pulsar's angular acceleration is [tex]-8.52541\times 10^{-12}\ rad/s^2[/tex]
Answer:
- 8.5 x 10^-12 rad/s²
Explanation:
Time period, T = 0.0922 s
dT / dt = 3.64 x 10^-7 s/year
As we know that
α = dω/dt
where, α is the angular acceleration and ω is the angular velocity
ω = 2π/T
[tex]\alpha =\frac{d\omega }{dt}[/tex]
[tex]\alpha =\frac{d\left ( \frac{2\pi }{T} \right ) }{dt}[/tex]
[tex]\alpha =-\frac{2\pi}{T^{2}}\times \frac{dT}{dt}[/tex]
By substituting the values
[tex]\alpha =-\frac{2\times 3.14}{0.0922^{2}}\times \frac{3.64\times 10^{-7}}{365\times 24\times 3600}[/tex]
α = - 8.5 x 10^-12 rad/s²