Answer:
Explanation:
Given :
Focal length [tex]f = 135 \times 10^{-3} m[/tex]
Maximum aperture [tex]D = \frac{f}{4}[/tex]
Wavelength [tex]\lambda = 550 \times 10^{-9}[/tex] m
(A)
From rayleigh criterion,
[tex]\theta = \frac{1.22 \lambda }{D}[/tex]
[tex]\theta =\frac{ 1.22 \times 550 \times 10^{-9} }{33.75 \times 10^{-3} }[/tex]
[tex]\theta = 1.98 \times 10^{-5}[/tex] rad
From angle formula,
[tex]x = R\theta[/tex]
Where [tex]R =[/tex] 12 m ( given in example )
[tex]x = 12 \times 1.98 \times 10^{-5}[/tex] m
[tex]x = 23.76 \times 10^{-5}[/tex]
[tex]x = 0.24 \times 10^{-3}[/tex] m
(B)
We know that [tex]\theta[/tex] is proportional to the [tex]x[/tex] and inversely proportional to the [tex]D[/tex]
so we write the new width, here [tex]x[/tex] is 5.5 times larger than above case
[tex]x = 0.24 \times 10^{-3} \times \frac{22}{4}[/tex]
[tex]x = 1.32 \times 10^{-3}[/tex] m