A plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station.

Respuesta :

Answer:

[tex]250\sqrt 3mi/h[/tex]

Explanation:

Altitude,h=1 mi

Speed,v=[tex]\frac{dx}{dt}=[/tex]500mi/h

We have to find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station.

[tex]y^2=x^2+h^2=x^2+1[/tex]

y=2 mi

[tex]2^2=x^2+1[/tex]

[tex]4-1=x^2[/tex]

[tex]3=x^2[/tex]

[tex]x=\sqrt 3[/tex]mi

Differentiate w.r. t

[tex]2y\frac{dy}{dt}=2x\frac{dx}{dt}+0[/tex]

[tex]y\frac{dy}{dt}=x\frac{dx}{dt}[/tex]

[tex]\frac{dy}{dt}=\frac{x}{y}\frac{dx}{dt}[/tex]

[tex]\frac{dy}{dt}=\frac{\sqrt 3}{2}\times 500=250\sqrt 3mi/h[/tex]

ACCESS MORE