Answer:
[tex]250\sqrt 3mi/h[/tex]
Explanation:
Altitude,h=1 mi
Speed,v=[tex]\frac{dx}{dt}=[/tex]500mi/h
We have to find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station.
[tex]y^2=x^2+h^2=x^2+1[/tex]
y=2 mi
[tex]2^2=x^2+1[/tex]
[tex]4-1=x^2[/tex]
[tex]3=x^2[/tex]
[tex]x=\sqrt 3[/tex]mi
Differentiate w.r. t
[tex]2y\frac{dy}{dt}=2x\frac{dx}{dt}+0[/tex]
[tex]y\frac{dy}{dt}=x\frac{dx}{dt}[/tex]
[tex]\frac{dy}{dt}=\frac{x}{y}\frac{dx}{dt}[/tex]
[tex]\frac{dy}{dt}=\frac{\sqrt 3}{2}\times 500=250\sqrt 3mi/h[/tex]