Respuesta :
Answer:
a) [tex]C = 40.138\,pF[/tex], b) [tex]q = 16.056\,nC[/tex], c) [tex]U = 3.212\,\mu J[/tex]
Explanation:
a) The capacitance of two parallel plates capacitor with dielectric is given by the following expression:
[tex]C = K\cdot \epsilon_{o}\cdot \frac{A}{d}[/tex]
Where:
[tex]K[/tex] - Dielectric constant.
[tex]\epsilon_{o}[/tex] - Vaccum permitivity.
[tex]A[/tex] - Plate area.
[tex]d[/tex] - Distance between plates.
Hence, the capacitance of the system is:
[tex]C = (4.00)\cdot (8.854\times 10^{-12}\,\frac{F}{m} )\cdot \left(\frac{17\times 10^{-4}\,m^{2}}{0.150\times 10^{-2}\,m}\right)[/tex]
[tex]C = 4.014\cdot 10^{-11}\,F[/tex]
[tex]C = 40.138\,pF[/tex]
b) The charge can be found by using the definition of capacitance:
[tex]q = C\cdot V_{batt}[/tex]
[tex]q = (4.014\times 10^{-11}\,F)\cdot (400\,V)[/tex]
[tex]q = 1.606\times 10^{-8}\,C[/tex]
[tex]q = 16.056\,nC[/tex]
c) The energy stored in the charged capacitor is:
[tex]U=\frac{1}{2}\cdot Q\cdot V_{batt}[/tex]
[tex]U=\frac{1}{2}\cdot (1.606\times 10^{-8}\,C)\cdot (400\,V)[/tex]
[tex]U = 3.212\times 10^{-6}\,J[/tex]
[tex]U = 3.212\,\mu J[/tex]
Answer:
Part A: 40.12×10⁻¹² F
Part B: 1.6048×10⁻⁸ C.
Part C: 3.2096×10⁻⁶ J
Explanation:
Part A
The formula of the capacitance of a capacitor is given as,
C = εrε₀A/d............... Equation 1
Where, C = capacitance of the capacitor, A = Area of the plate, d = distance of separation of the plates, εr = dielectric constant, ε₀ = permitivity of free space.
Given: A = 17 cm² = 0.0017 m², d = 0.150 cm = 0.0015 m, εr = 4.00, ε₀ = 8.85×10⁻¹² F/m
Substitute into equation 1
C = 4(0.0017)(8.85×10⁻¹²)/(0.0015)
C = 40.12×10���¹² F.
Part B
Using
Q = CV........................ Equation 2
Where Q = charge on either plates, V = Voltage.
Given: V = 400 V, C = 40.12×10⁻¹² F
Substitute into equation 3
Q = 400(40.12×10⁻¹²)
Q = 1.6048×10⁻⁸ C.
Part C
The formula for the energy stores in a charged capacitor is given as
U = 1/2CV²..................... Equation 3
Where U = Energy stored in the capacitor
Given: C = 40.12×10⁻¹² F, V = 400 V
Substitute into equation 3
U = 1/2(40.12×10⁻¹²)(400²)
U = 3.2096×10⁻⁶ J