An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate (ϵ˙) is found to be 1% per hour at 800 ∘C and 5.5×10−2% per hour at 700 ∘C. Calculate the activation energy for creep in this temperature range.

Respuesta :

Answer:

Activation energy for creep in this temperature range is Q = 252.2 kJ/mol

Explanation:

To calculate the creep rate at a particular temperature

creep rate, [tex]\zeta_{\theta} = C \exp(\frac{-Q}{R \theta} )[/tex]

Creep rate at 800⁰C, [tex]\zeta_{800} = C \exp(\frac{-Q}{R (800+273)} )[/tex]

[tex]\zeta_{800} = C \exp(\frac{-Q}{1073R} )\\\zeta_{800} = 1 \% per hour =0.01\\[/tex]

[tex]0.01 = C \exp(\frac{-Q}{1073R} )[/tex].........................(1)

Creep rate at 700⁰C

[tex]\zeta_{700} = C \exp(\frac{-Q}{R (700+273)} )[/tex]

[tex]\zeta_{800} = C \exp(\frac{-Q}{973R} )\\\zeta_{800} = 5.5 * 10^{-2} \% per hour =5.5 * 10^{-4}[/tex]

[tex]5.5 * 10^{-4} = C \exp(\frac{-Q}{1073R} )[/tex].................(2)

Divide equation (1) by equation (2)

[tex]\frac{0.01}{5.5 * 10^{-4} } = \exp[\frac{-Q}{1073R} -\frac{-Q}{973R} ]\\18.182= \exp[\frac{-Q}{1073R} +\frac{Q}{973R} ]\\R = 8.314\\18.182= \exp[\frac{-Q}{1073*8.314} +\frac{Q}{973*8.314} ]\\18.182= \exp[0.0000115 Q]\\[/tex]

Take the natural log of both sides

[tex]ln 18.182= 0.0000115Q\\2.9004 = 0.0000115Q\\Q = 2.9004/0.0000115\\Q = 252211.49 J/mol\\Q = 252.2 kJ/mol[/tex]

Otras preguntas