Answer:
a) 0.7
b) 0.075
c) (0.0.601,0.799)
Step-by-step explanation:
We are given the following in the question:
[tex]\hat{p} = 0.7[/tex]
Sample size, n = 140
(a) Point estimate
The best point estimate for population proportion is the sample proportion.
[tex]p = \hat{p} = 0.7[/tex]
(b) Margin of error
Formula:
[tex]z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]
Putting values, we get,
Margin of error =
[tex]1.96\sqrt{\dfrac{0.7(1-0.7)}{140}} = 0.075[/tex]
(c) 99% confidence interval
[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.01} = \pm 2.58[/tex]
Putting the values, we get:
[tex]0.7\pm 2.58(\sqrt{\dfrac{0.7(1-0.7)}{140}}) = 0.7\pm 0.099\\\\=(0.0.601,0.799)[/tex]