Answer:
[tex]Q_2=4.4293\times 10^{22}\ nC[/tex]
Explanation:
Given
charge on the fixed particle, [tex]Q_1=15\times 10^{-9}\ C[/tex]
mass of the second charge, [tex]m_2=9.5\times 10^{-3}\ kg[/tex]
distance between the fixed charge and the floating charge on the top, [tex]d=0.25\ m[/tex]
[tex]m_2.g=\frac{1}{4\pi\epsilon_0} \times \frac{Q_1.Q_2}{d^2}[/tex]
where:
[tex]\epsilon_0=[/tex] permittivity of free space
g = acceleration due to gravity
[tex]9.5\times 10^{-3}\times 9.8=8.85\times 10^{-9}\times \frac{15\times 10^{-9}\times Q_2}{0.25^2}[/tex]
[tex]Q_2=4.4293\times 10^{22}\ nC[/tex]