Answer:
[tex]Length=10 m\\\\Width=3.5 m[/tex]
Step-by-step explanation:
Area of the rectangle = [tex]35 m^2[/tex]
Let the width of the rectangle be 'w' meter
Length of the rectangle=[tex](2w+3) meter[/tex]
Area of the rectangle = length * Width
[tex]35=(2w+3)(w)\\\\35=2w^2+3w\\\\2w^2+3w-35=0[/tex]
Making the factors of the equation:
[tex]2w^2+10w-7w-35=0\\[/tex]
Taking common form the equation:
[tex]2w(w+5)-7(w+5)=0\\\\(w+5)(2w-7)=0\\[/tex]
[tex](w+5)=0\\\\w=-5[/tex]
OR
[tex]2w-7=0\\\\2w=7\\\\w=7/2\\\\w=3.5m\\\\[/tex]
As, the width of the rectangle cannot be negative so the [tex]width(w)= 3.5 m[/tex]
[tex]Length(L)=2w+3= 2(3.5)+3= 7+3=10 m[/tex]
[tex]Length=10 m\\\\Width=3.5 m[/tex]