Respuesta :
Answer:
(1) P([tex]\bar X[/tex] < 26 inches) = 0.0436
(2) P(27.5 inches < [tex]\bar X[/tex] < 28.5 inches) = 0.2812
Step-by-step explanation:
We are given that the mean vertical leap of all NBA players is 28 inches. Suppose the standard deviation is 7 inches and 36 NBA players are selected at random.
Firstly, Let [tex]\bar X[/tex] = mean vertical leap for the 36 players
Assuming the data follows normal distribution; so the z score probability distribution for sample mean is given by;
Z = [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean vertical leap = 28 inches
[tex]\sigma[/tex] = standard deviation = 7 inches
n = sample of NBA player = 36
(1) Probability that the mean vertical leap for the 36 players will be less than 26 inches is given by = P([tex]\bar X[/tex] < 26 inches)
P([tex]\bar X[/tex] < 26) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{26-28}{\frac{7}{\sqrt{36} } }[/tex] ) = P(Z < -1.71) = 1 - P(Z [tex]\leq[/tex] 1.71)
= 1 - 0.95637 = 0.0436
(2) Now, here sample of NBA players is 26 so n = 26.
Probability that the mean vertical leap for the 26 players will be between 27.5 and 28.5 inches is given by = P(27.5 inches < [tex]\bar X[/tex] < 28.5 inches) = P([tex]\bar X[/tex] < 28.5 inches) - P([tex]\bar X[/tex] [tex]\leq[/tex] 27.5 inches)
P([tex]\bar X[/tex] < 28.5) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{28.5-28}{\frac{7}{\sqrt{26} } }[/tex] ) = P(Z < 0.36) = 0.64058 {using z table}
P([tex]\bar X[/tex] [tex]\leq[/tex] 27.5) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{27.5-28}{\frac{7}{\sqrt{26} } }[/tex] ) = P(Z [tex]\leq[/tex] -0.36) = 1 - P(Z < 0.36)
= 1 - 0.64058 = 0.35942
Therefore, P(27.5 inches < [tex]\bar X[/tex] < 28.5 inches) = 0.64058 - 0.35942 = 0.2812