Answer: The cell voltage of the given reaction is 1.86 V
Explanation:
The given chemical equation follows:
[tex]3Cu^{2+}(aq.)+2Al\rightarrow 2Al^{3+}(aq.)+2Au(s)[/tex]
Oxidation half reaction: [tex]Al(aq.)\rightarrow Al^{3+}(aq.)+3e^-;E^o_{Al^{3+}/Al}=1.66V[/tex] ( × 2)
Reduction half reaction: [tex]Cu^{2+}(aq.)+2e^-\rightarrow Cu(s);E^o_{Cu^{2+}/Cu}=0.16V[/tex] ( × 3)
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=0.16-(-1.66)=1.82V[/tex]
To calculate the EMF of the cell, we use the Nernst equation, which is:
[tex]E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Al^{3+}]^2}{[Cu^{2+}]^3}[/tex]
where,
[tex]E_{cell}[/tex] = electrode potential of the cell = ? V
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +1.82 V
n = number of electrons exchanged = 2
R = Gas constant = 8.314 J/mol Kl
T = temperature = [tex]42^oC=[42+273]K=315K[/tex]
F = Faraday's constant = 96500
[tex][Al^{3+}]=1.63M[/tex]
[tex][Cu^{2+}]=3.43M[/tex]
Putting values in above equation, we get:
[tex]E_{cell}=1.82-\frac{2.303\times 8.314\times 315}{2\times 96500}\times \log(\frac{(1.63)^2}{(3.43)^3})\\\\E_{cell}=1.86V[/tex]
Hence, the cell voltage of the given reaction is 1.86 V