contestada

Two particles, with identical positive charges and separation of 2.55 10-2 m, are released from rest. Immediately after the release, particle 1 has an acceleration vector a1 whose magnitude is 4.65 103 m/s2, while particle 2 has an acceleration vector a2 whose magnitude is 8.55 103 m/s2. Particle 1 has a mass of 6.05 10-6 kg.
a. Find the charge on each particle. q1 = C q2 = C
b. Find the mass of particle 2. kg

Respuesta :

Answer with Explanation:

We are given that

Distance between two charges,d=[tex]2.55\times 10^{-2} m[/tex]

[tex]a_1=4.65\times 10^3 m/s^2[/tex]

[tex]a_2=8.55\times 10^3 m/s^2[/tex]

Mass of particle 1=[tex]m_1=6.05\times 10^{-6} kg[/tex]

a.We have to find the change on each particle .

Let [tex]q_1=q_2=q[/tex]

Force ,[tex]F=\frac{kq_1q_2}{d^2}[/tex]

Where [tex]k=9\times 10^9[/tex]

Using the formula

[tex]F=\frac{9\times 10^9\times q^2}{(2.55\times 10^{-2})^2}[/tex]

For particle 1

[tex]F=m_1a_1[/tex]

[tex]F=6.05\times 10^{-6}\times 4.65\times 10^3=0.028 N[/tex]

Using the value of F

[tex]0.028=\frac{9\times 10^9\times q^2}{(2.55\times 10^{-2})^2}[/tex]

[tex]q^2=\frac{(2.55\times 10^{-2})^2\times 0.028}{9\times 10^9}[/tex]

[tex]q=\sqrt{\frac{(2.55\times 10^{-2})^2\times 0.028}{9\times 10^9}}[/tex]

[tex]q=4.5\times 10^{-8} C[/tex]

[tex]q_1=q_2=4.5\times 10^{-8} C[/tex]

b.[tex]m_2=\frac{F}{a_2}[/tex]

Using the formula

[tex]m_2=\frac{0.028}{8.55\times 10^3}[/tex]

[tex]m_2=3.3\times 10^{-6} kg[/tex]