Answer with Explanation:
We are given that
Distance between two charges,d=[tex]2.55\times 10^{-2} m[/tex]
[tex]a_1=4.65\times 10^3 m/s^2[/tex]
[tex]a_2=8.55\times 10^3 m/s^2[/tex]
Mass of particle 1=[tex]m_1=6.05\times 10^{-6} kg[/tex]
a.We have to find the change on each particle .
Let [tex]q_1=q_2=q[/tex]
Force ,[tex]F=\frac{kq_1q_2}{d^2}[/tex]
Where [tex]k=9\times 10^9[/tex]
Using the formula
[tex]F=\frac{9\times 10^9\times q^2}{(2.55\times 10^{-2})^2}[/tex]
For particle 1
[tex]F=m_1a_1[/tex]
[tex]F=6.05\times 10^{-6}\times 4.65\times 10^3=0.028 N[/tex]
Using the value of F
[tex]0.028=\frac{9\times 10^9\times q^2}{(2.55\times 10^{-2})^2}[/tex]
[tex]q^2=\frac{(2.55\times 10^{-2})^2\times 0.028}{9\times 10^9}[/tex]
[tex]q=\sqrt{\frac{(2.55\times 10^{-2})^2\times 0.028}{9\times 10^9}}[/tex]
[tex]q=4.5\times 10^{-8} C[/tex]
[tex]q_1=q_2=4.5\times 10^{-8} C[/tex]
b.[tex]m_2=\frac{F}{a_2}[/tex]
Using the formula
[tex]m_2=\frac{0.028}{8.55\times 10^3}[/tex]
[tex]m_2=3.3\times 10^{-6} kg[/tex]