Respuesta :
Answer:
Explanation:
Given that
Initial velocity wo=0.210rev/s
Then, 1rev=2πrad
wo=0.21×2πrad/s
wo=0.42π rad/s
Given angular acceleration of 0.9rev/s²
α=0.9×2πrad/s²
α=1.8π rad/s²
Diameter of blade
d=0.75m,
Radius=diameter/2
r=0.75/2=0.375m
a. Angular velocity after t=0.194s
Using equation of angular motion
wf=wo+αt
wf=0.42π+ 1.8π×0.194
wf= 0.42π + 0.3492π
wf=1.319+1.097
wf= 2.42rad/s
If we want the answer in revolution
1rev=2πrad
wf= 2.42/2π rev/s
wf=0.385 rev/s
b. Revolution traveled in 0.194s
Using angular motion equation
θf - θi = wo•t + ½ αt²
θf - 0= 0.42π•0.194 + ½ × 1.8π•0.194²
θf = 0.256 + 0.106
θf = 0.362rad
Now, to revolution
1rev=2πrad
θf=0.362/2π=0.0577rev
Approximately θf= 0.058rev
c. Tangential speed? At time 0.194s
Vt=?
w=2.42rad/s at t=0.194s
Using circular motion formulae, relationship between linear velocity and angular velocity
V=wr
Vt=wr
Vt= 2.42×0.375
Vt=0.9075 m/s
Vt≈0.91m/s
d. Magnitude of resultant acceleration
Tangential Acceleration is given as
at=αr
at=1.8π× 0.375
at=2.12rad/s²
Now, radial acceleration is given as
ar=w²r
ar=2.42²×0.375
ar=2.196 m/s²
Then, the magnitude is
a=√ar²+at²
a=√2.196²+2.12²
a=√9.3171
a=3.052m/s²
a≈ 3.05m/s²
Answer:
a) 2.42rad/s
b) 0.09rev
c) 0.91m/s
d) [tex] 3.06m/s^2 [/tex];
Explanation:
We are given:
[tex] w_0 = 0.210rev/s [/tex];
(converting to rad we have)
wo = 0.210rev/s (2πrad/1rev) = 21π/50
a = 0.900rev/s^2 ==> 9π/5
d = 0.750m
a) Let's use the equation:
[tex] w = w_0 +at [/tex]
Substituting figures in the equation:
w = 21π/50 + (9π/5) (0.194)
w = 2.42rad/s
b) we use:
[tex] w_0 t + 1/2 at^2 [/tex];
= (2.42) (0.194) + 1/2 (9π/5) (0.194)^2
=0.5752rad
We need to convert to rev
= 0.5752rad (1rev/2rad)
= 0.09rev
c) t= 0.194s
V = wr
But r = d/2
Therefore,
V= 2.42 × (0.750/2)
V= 0.91m/s
d) t= 0.194s
[tex] a_t_a_n = ar [/tex];
= (9π/5) (0.750/2)
[tex] =2.121m/s^2 [/tex];
[tex] a_r_a_d = w^2 r [/tex];
[tex] = (2.42)^2 (0.750/2)
= 2.2m/s^2 [/tex];
Therefore
[tex] a= \sqrt*{(a^2_t_a_n) + (a^2_r_a_d)} [/tex];
[tex] =\sqrt*{ (2.121)^2 + (2.2)^2} [/tex];
[tex] = 3.06m/s^2 [/tex]