Answer:
[tex]=- 1.969*10^3lbf[/tex]
Explanation:
Given that:
Gage pressure at the inlet [tex]P_{gl}[/tex] = 20psig
Inlet diameter D = 4 in
Exit diameter d = 1.5 in
Volumetric flow rate at inlet
[tex]Q_1[/tex] = 2ft³?s
Applying continuity and the x component of the momentum;
we have:
Q = [tex]V_1A_1[/tex]
[tex]V_1A_1[/tex] = [tex]V_2A_2[/tex]
[tex]V_1=\frac{Q}{A_1}[/tex]
[tex]A_1= \pi \frac{D_1^2}{4}[/tex]
[tex]A_2= \pi \frac{D_2^2}{4}[/tex]
Velocity at inlet is calculate as :
[tex]V_1= \frac{4*Q}{ \pi D_1^2}[/tex]
[tex]V_1= (\frac{4*2}{\pi *4^2})(\frac{144}{1} )[/tex]
= 22.92 ft/s
Velocity at the exit:
[tex]V_2= \frac{4*Q}{ \pi D_2^2}[/tex]
[tex]V_2= (\frac{4*2}{\pi *1.5^2})(\frac{144}{1} )[/tex]
= 162.98 ft/s
The required external force can be calculated by using the formula:
[tex]R_x+P_{gl}A_l + \rho Q(V_2-V_1)[/tex]
[tex]R_x=- P_{gl}A_l + \rho Q(V_2-V_1)[/tex]
[tex]R_x=- (200)(\pi \frac{4^2}{4})+(1.94)(2)(162.98-22.92)[/tex]
[tex]R_x=- 1969.84[/tex]
[tex]R_x=- 1.969*10^3lbf[/tex]
Thus, the external force required to hold the orifice in place[tex]=- 1.969*10^3lbf[/tex]