Respuesta :
Answer:
240.59 N
Explanation:
We are given that
Mass per unit length=m/l=[tex]\mu=2.33\times 10^{-3} kg/m[/tex]
Fundamental frequency,f=146.8 Hz
Tension=T=82.4 N
Mass per unit length=[tex]\mu'=6.8\times 10^{-3} kg/m[/tex]
We have to find the tension.
Velocity,v=[tex]\sqrt{\frac{T}{\mu}}=\sqrt{\frac{82.4}{2.33\times 10^{-3}}}=188.1m/s[/tex]
New tension,T'=[tex]v^2\mu'=(188.1)^2\times 6.8\times 10^{-3}[/tex]
[tex]T'=240.59 N[/tex]
Hence, the string should have tension 240.59 N so that its fundamental frequency is 146.8 Hz
Answer:
Explanation:
mass per unit length, μ = 2.33 x 10^-3 kg/m
frequency, f = 146.8 Hz
Tension, T = 82.4 N
mass per unit length of another string, μ' = 6.8 x 10^-3 kg/m
Let the tension is T'
Let the length is L.
the formula for the frequency is
[tex]f=\frac{1}{2L}\sqrt{\frac{T}{\mu }}[/tex]
So, the frequency remains same, length remains same but the tension and the mass per unit length is different.
[tex]\frac{1}{2L}\sqrt{\frac{T}{\mu }}=\frac{1}{2L}\sqrt{\frac{T'}{\mu' }}[/tex]
So, [tex]\frac{T'}{\mu '}=\frac{T}{\mu}[/tex]
[tex]\frac{T'}{6.8\times 10^{-3}}=\frac{82.4}{2.33\times 10^{-3}}[/tex]
T' = 240.5 N