Respuesta :
Answer:
0.005 V
Explanation:
We are given that
Initial circumference of circular loop=C=165 cm
Rate of circumference,[tex]\frac{dC}{dt}=12 cm/s[/tex]
Magnetic field,B=0.5 T
We have to find the induced emf at time t=9 s
We know that induced amf,E=[tex]\frac{Bd(A)}{dt}[/tex]
Area of circular coil,A=[tex]\pi r^2[/tex]
[tex]E=B\frac{d(\pi r^2)}{dt}=B(2\pi r)\frac{dr}{dt}[/tex]
Circumference of circular coil,C=[tex]2\pi r[/tex]
[tex]165=2\pi r[/tex]
[tex]r=\frac{165}{2\pi}[/tex]
[tex]\frac{dr}{dt}=\frac{1}{2\pi}\frac{dC}{dt}=\frac{1}{2\pi}\times (12)=\frac{6}{\pi} cm/s=\frac{6\times 10^{-2}}{\pi} m/s[/tex]
Radius of coil at time t=9 s
[tex]r=\frac{165}{2\pi}-(\frac{6}{\pi}\times 9)=9.08 cm=9.08\times 10^{-2} m[/tex]
[tex]1 m=100 cm[/tex]
E=[tex]-0.5(2\pi\times 9.08\times 10^{-2})\times \frac{6\times 10^{-2}}{\pi}=-0.005 V[/tex]
Magnitude of induced emf=0.005 V
Answer:
Explanation:
initial circumference, C = 165 cm = 1.65 m
rate of change of circumference, dC/dt = 12 cm /s = 0.12 m/s
magnetic field, B = 0.5 T
According to the Faraday's law of electromagnetic induction
e = dФ/dt
where, Ф is the magnetic flux
Ф = B A
where, A is the area of the coil
[tex]e=\frac{d}{dt}(BA)[/tex]
[tex]e=B\frac{dA}{dt}[/tex]
[tex]e=B\frac{d(\pi r^{2})}{dt}[/tex]
[tex]e=2\pi r\times B\frac{dr}{dt}[/tex] ... (1)
C = 2πr
dC/dt = 2π dr/dt
Put in equation (1)
[tex]e=C \times B\times \frac{1}{2\pi }\times \frac{dC}{dt}[/tex]
e = (1.65 x 0.5 x 0.12) / (2 x 3.14)
e = 0.016 V