Respuesta :
Answer:
a) [tex]P(X>20)=P(\frac{X-\mu}{\sigma}>\frac{20-\mu}{\sigma})=P(Z>\frac{20-15}{3.5})=P(z>1.43)[/tex]
And we can find this probability using the complement rule, the normal standard distribution or excel or a calculator
[tex]P(z>1.43)=1-P(z<1.43)=1-0.9236=0.076[/tex]
b) [tex]P(X<20)=P(\frac{X-\mu}{\sigma}<\frac{20-\mu}{\sigma})=P(Z<\frac{20-15}{3.5})=P(z<1.43)[/tex]
And we can find this probability using the normal standard distribution or excel or a calculator
[tex]P(z<1.43)=0.9236[/tex]
c) [tex]P(<10X<12)=P(\frac{10-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{12-\mu}{\sigma})=P(\frac{10-15}{3.5}<Z<\frac{12-15}{3.5})=P(-1.43<z<-0.86)[/tex]
And we can find this probability using the normal standard distribution or excel or a calculator with the following difference:
[tex]P(-1.43<z<-0.86)=P(z<-0.86) -P(z<-1.43) =0.195-0.076=0.199 [/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the lenghts of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(15,3.5)[/tex]
Where [tex]\mu=15[/tex] and [tex]\sigma=3.5[/tex]
We are interested on this probability
[tex]P(X>20)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X>20)=P(\frac{X-\mu}{\sigma}>\frac{20-\mu}{\sigma})=P(Z>\frac{20-15}{3.5})=P(z>1.43)[/tex]
And we can find this probability using the complement rule, the normal standard distribution or excel or a calculator
[tex]P(z>1.43)=1-P(z<1.43)=1-0.9236=0.076[/tex]
Part b
[tex]P(X<20)=P(\frac{X-\mu}{\sigma}<\frac{20-\mu}{\sigma})=P(Z<\frac{20-15}{3.5})=P(z<1.43)[/tex]
And we can find this probability using the normal standard distribution or excel or a calculator
[tex]P(z<1.43)=0.9236[/tex]
Part c
[tex]P(<10X<12)=P(\frac{10-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{12-\mu}{\sigma})=P(\frac{10-15}{3.5}<Z<\frac{12-15}{3.5})=P(-1.43<z<-0.86)[/tex]
And we can find this probability using the normal standard distribution or excel or a calculator with the following difference:
[tex]P(-1.43<z<-0.86)=P(z<-0.86) -P(z<-1.43) =0.195-0.076=0.199 [/tex]