Answer:
[tex]ws(1,0)=52[/tex]
[tex]wt(1,0)=34[/tex]
Step-by-step explanation:
u v
[tex]u(1, 0) = 2..............v(1, 0) = 3[/tex]
[tex]us(1, 0) = -2............vs(1, 0) = 5[/tex]
[tex]ut(1, 0) = 6............vt(1, 0) = 4[/tex]
[tex]Fu(2, 3) = -1.............Fv(2, 3) = 10[/tex]
To find [tex]w_{s}[/tex] :
we have to use the above equation, which is subscription notation
w(s, t) = F(u(s, t), v(s, t))
(1, 0) = ((u(1, 0), v(1, 0)), (u(1, 0), v(1, 0))) · ((1, 0), (1, 0))
= ((2, 3), (2, 3)) · (−2, 5)
= [tex](-1, 10) * (-2, 5)[/tex] expand
=[tex](2)+(50)[/tex]
=[tex]52[/tex]
To find [tex]w_{t}[/tex] :
wt(1, 0) = ((u(1, 0), v(1, 0)), (u(1, 0), v(1, 0))) · ((1, 0), (1, 0))
= ((2, 3), (2, 3)) · (6, 4)
=[tex](-1, 10) * (6, 4)[/tex] expand
=[tex](-6)+(40)[/tex]
=[tex]34[/tex]