let w(s,t)=F(u(s,t),v(s,t)),where F,u and v are differentiable,u(1,0)=2
us=(1,0)=-2,ut=(1,0)=6,v(1,0)=3,vs(1,0)=5,vt(1,0)=4,Fu(2,3)=-1, Fv(2,3)=10

Find ws(1,0) AND wt(1,0)

Respuesta :

Answer:

[tex]ws(1,0)=52[/tex]

[tex]wt(1,0)=34[/tex]

Step-by-step explanation:

u                              v

[tex]u(1, 0) = 2..............v(1, 0) = 3[/tex]

[tex]us(1, 0) = -2............vs(1, 0) = 5[/tex]

[tex]ut(1, 0) = 6............vt(1, 0) = 4[/tex]

[tex]Fu(2, 3) = -1.............Fv(2, 3) = 10[/tex]

To find [tex]w_{s}[/tex] :

we have to use the above equation, which is subscription notation

w(s, t) = F(u(s, t), v(s, t))

(1, 0) = ((u(1, 0), v(1, 0)), (u(1, 0), v(1, 0))) · ((1, 0), (1, 0))

           = ((2, 3), (2, 3)) · (−2, 5)

           = [tex](-1, 10) * (-2, 5)[/tex]  expand

           =[tex](2)+(50)[/tex]

           =[tex]52[/tex]

To find [tex]w_{t}[/tex] :

 wt(1, 0) = ((u(1, 0), v(1, 0)), (u(1, 0), v(1, 0))) · ((1, 0), (1, 0))

             = ((2, 3), (2, 3)) · (6, 4)

             =[tex](-1, 10) * (6, 4)[/tex]   expand

             =[tex](-6)+(40)[/tex]

             =[tex]34[/tex]

ACCESS MORE