Explanation:
since motion is impends F= μN between A+B
Free body diagram of block A impending motion
∑[tex]F_{y} =0; N_{1} -50cos(theta)=0[/tex]
[tex]N_{1} =50cos(theta)[/tex]
∑[tex]F_{x}=0;T-50sin(theta) +[/tex]μ(1)[tex]N_{1} =0[/tex]
[tex]T=50sin(theta)[/tex]-μ(1)[tex](50)cos(theta)........(1)[/tex]
Free body diagram of block B impending motion
∑[tex]F_{y} =0;N_{2}- N_{1} -25cos(theta)=0[/tex]
[tex]N_{2}=75cos(theta)[/tex]
∑[tex]F_{x}'\;T-[/tex]μ(1)[tex]N_{1}-[/tex]μ(2)[tex]N_{2} -25sin(theta)[/tex]
T=μ(1)(50)[tex]cos(theta)+[/tex]μ(2)(75)[tex]cos(theta)_25sin(theta)........(2)[/tex]
From Eq1 and Eq2
0=[tex]25sin(theta)-[/tex]μ(1)[tex](100)cos(theta)-[/tex]μ(2)[tex](75)cos(theta)=0[/tex]
substituting in for μ(1)=0.15 and μ(2)=0 we have [tex]15cos(theta)=25sin(theta);tan(theta)=15/25\\theta=31.0^o[/tex]