Explanation:
For this problem we have to take into account the expression
J = I/area = I/(π*r^(2))
By taking I we have
I = π*r^(2)*J
(a)
For Ja = J0r/R the current is not constant in the wire. Hence
[tex]I(r) = \pi r^{2} J(r) = \pi r^{2} J_{0}r/R = \pi r^{3} (3.74*10^{4}A/m^{2})/(2.02*10^{-3}m)[/tex]
and on the surface the current is
[tex]I(R) = \pi r^{2} J(R) = \pi r^{2} J_{0}R/R = \pi(2.02*10^{-3})^{2} (3.74*10^{4}) = 0.47 A[/tex]
(b)
For Jb = J0(1 - r/R)
[tex]I(r)=\pi r^{2}J(r) =\pi r^{2} J_{0}(1 - r/R)=\pi r^{2}J_{0}(1-\frac{r}{2.02*10^{-3}} )[/tex]
and on the surface
[tex]I(R)=\pi r^{2}J_{0}(1-R/R)=\pi r^{2}J_{0}(1-1)= 0[/tex]
(c)
Ja maximizes the current density near the wire's surface
Additional point
The total current in the wire is obtained by integrating
[tex]I_{T}=\pi\int\limits^R_0 {r^{2}Ja(r)} \, dr = \pi \frac{J_{0}}{R}\int\limits^R_0 {r^{3}} \ dr =\pi \frac{J_{0}R^{4}}{4R}=\frac{1}{4}\pi J_{0}R^{3}=2.42*10^{-4} A[/tex]
and in a simmilar way for Jb
[tex]I_{T}=\pi J_{0} \int\limits^R_0 {r^{2}(1-r/R)} \, dr = \pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2R}]=\pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2}][/tex]
And it is only necessary to replace J0 and R.
I hope this is useful for you
regards