A ball with a mass of 2 kg is swinging in a horizontal circle of radius 20 cm. If thestring can sustain a maximum tension (T) of 500 N, what is the maximum speed theball can reach before the string breaks

Respuesta :

Answer:

7.07 m/s

Explanation:

We are given that

Mass of ball,m=2 kg

Radius of circle,r=20 cm=[tex]20\times 10^{-2} m[/tex]

1 m=100 cm

Maximum tension,T=500 N

We have to find the maximum speed of the ball can reach before the string breaks.

Tension,T=[tex]\frac{mv^2}{r}[/tex]

Using the formula

[tex]500=\frac{2\times v^2}{20\times 10^{-2}}[/tex]

[tex]v^2=\frac{500\times 20\times 10^{-2}}{2}[/tex]

[tex]v=\sqrt{\frac{500\times 20\times 10^{-2}}{2}[/tex]

[tex]v=7.07 m/s[/tex]

Answer:

Explanation:

mass of ball, m = 2 kg

Radius of circle, r = 20 cm = 02 m

Tension, T = 500 N

Let the maximum speed is v.

The centripetal force provides the tension.

[tex]T = \frac{mv^{2}}{r}[/tex]

[tex]500= \frac{2v^{2}}{0.2}[/tex]

v² = 50

v = 7.07 m/s

Thus, the maximum speed is 7.07 m/s.

ACCESS MORE