Respuesta :
Answer:
7.07 m/s
Explanation:
We are given that
Mass of ball,m=2 kg
Radius of circle,r=20 cm=[tex]20\times 10^{-2} m[/tex]
1 m=100 cm
Maximum tension,T=500 N
We have to find the maximum speed of the ball can reach before the string breaks.
Tension,T=[tex]\frac{mv^2}{r}[/tex]
Using the formula
[tex]500=\frac{2\times v^2}{20\times 10^{-2}}[/tex]
[tex]v^2=\frac{500\times 20\times 10^{-2}}{2}[/tex]
[tex]v=\sqrt{\frac{500\times 20\times 10^{-2}}{2}[/tex]
[tex]v=7.07 m/s[/tex]
Answer:
Explanation:
mass of ball, m = 2 kg
Radius of circle, r = 20 cm = 02 m
Tension, T = 500 N
Let the maximum speed is v.
The centripetal force provides the tension.
[tex]T = \frac{mv^{2}}{r}[/tex]
[tex]500= \frac{2v^{2}}{0.2}[/tex]
v² = 50
v = 7.07 m/s
Thus, the maximum speed is 7.07 m/s.