An ideal gas Carnot cycle with air in a piston cylinder has a high temperature of 1200 K and a heat rejection at 400 K. During the heat addition the volume triples. Find the two specific heat transfers (q) in the cycle and the overall cycle efficiency. Solution:

Respuesta :

Answer:

The specific heat capacity is q_{L}=126.12kJ/kg

The efficiency of the temperature is n_{TH}=0.67

Explanation:

The p-v diagram illustration is in the attachment

T_{H} means high temperature

T_{L} means low temperature

The energy equation :

[tex]q_{h}[/tex] = R* [tex]T_{h}[/tex] in([tex]V_{2}[/tex]/[tex]V_{1}[/tex])

   [tex]=0.287 * 1200 ln(3)[/tex]

   [tex] =0.287*1318.33[/tex]

   [tex] =378.36kJ/kg[/tex]

The specific heat capacity:

[tex]q_{L}[/tex]=q_{h}*(T_{L}/T_{H})

q_{L}=378.36 * (400/1200)

q_{L}=378.36 * 0.333

q_{L}=126.12kJ/kg

The efficiency of the temperature will be:

[tex]n_{TH}[/tex]=1 - ([tex]T_{L}[/tex]/[tex]T_{H}[/tex])

n_{TH}=1-(400/1200)

n_{TH}=1-0.333

n_{TH}=0.67

Ver imagen fahadisahadam