Answer:
[tex]\dot W_{out} = 133.327\,kW[/tex]
Explanation:
The model for the turbine can be derived by means of the First Law of Thermodynamics:
[tex]-\dot Q_{out}-\dot W_{out} +\dot m \cdot \left[(h_{in}-h_{out})+\frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) + g\cdot (z_{in}-z_{out})\right] =0[/tex]
The work produced by the turbine is:
[tex]\dot W_{out}=-\dot Q_{out} +\dot m \cdot \left[(h_{in}-h_{out})+\frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) + g\cdot (z_{in}-z_{out})\right][/tex]
The mass flow and heat transfer rates are, respectively:
[tex]\dot m = (10\frac{kg}{min})\cdot (\frac{1\,min}{60\,s} )[/tex]
[tex]\dot m = 0.167\,\frac{kg}{s}[/tex]
[tex]\dot Q_{out} = (0.167\,\frac{kg}{s} )\cdot (1.1\times 10^{3}\,\frac{J}{kg} )[/tex]
[tex]\dot Q_{out} = 183.7\,W[/tex]
Finally:
[tex]\dot W_{out} = -183.7\,W + (0.167\,\frac{kg}{s} )\cdot \left(8\times 10^{5}\,\frac{J}{kg} -562,5\,\frac{J}{kg} +29.43\,\frac{J}{kg} \right)[/tex]
[tex]\dot W_{out} = 133.327\,kW[/tex]